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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PROBLEM SET 9
Solutions by T. Bunn and J. Barber

Reading:
105 Notes 10.1-10.3, 11.1-11.4
Hand & Finch 8.4-8.12

1.
Three equal point masses are located at (a, 0, 0),
(0, 2a, 2a), and (0, 2a, a). About the origin, find
the principal moments of inertia and a set of
principal axes.
Solution:
For a number of point masses, the expression for
the inertia tensor becomes

Iij =
∑

mk

(
|xk|2δij − xkixkj

)

So:

Ixx = m
(
02 + 02 + (2a)2 + (2a)2 + (2a)2 + a2

)

= 13ma2

Iyy = m
(
a2 + 02 + 02 + (2a)2 + 02 + a2

)

= 6ma2

Izz = m
(
a2 + 02 + 02 + (2a)2 + 02 + (2a)2

)

= 9ma2

Iyx = Ixy = −m ((a)(0) + (0)(2a) + (0)(2a))
= 0

Izx = Ixz = −m ((a)(0) + (0)(2a) + (0)(a))
= 0

Izy = Iyz = −m ((0)(0) + (2a)(2a) + (2a)(a))

= −6ma2

So the full inertia tensor is

I = ma2


 13 0 0

0 6 −6
0 −6 9




The principal moments and the principal axes
are the eigenvalues and eigenvectors of this ma-
trix. Skipping the explicit calculation, the prin-
cipal moments are 13ma2 and 3

2 (5 ± √
17)ma2,

and the (unnormalized) eigenvectors are


 1

0
0


 and


 0

1
4 (1±

√
17)

1


 .

2.
Consider a rigid body that is plane, i.e. it lies in
the plane z = 0.
(a)
Prove that the z axis is a principal axis.
Solution:
If the z axis is a principal axis, then ẑ will be
an eigenvector of the inertia tensor. Thus we
need to show that Ixz = Iyz = 0. That way,
I ẑ = Ixzx̂+ Iyz ŷ+ Izz ẑ = Izz ẑ. Suppose σ(x, y)
is the surface mass density, so that the volume
mass density is ρ(x, y, z) = σ(x, y)δ(z). Then:

Ixz = −
∫

ρ(x, y, z) y z dx dy dz

= −
∫

σ(x, y) dx dy
∫

z δ(z) dz

= 0

Iyz = 0 by a similar argument. Thus ẑ is a
principal axis.

(b)
Prove that the diagonalized inertia tensor for
this plane rigid body has the largest element
equal to the sum of the two smaller elements.
Solution:
Let’s assume we’ve chosen a coordinate system
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whose axes are the principal axes. Then the
three moments of inertia are

Ixx =
∫

σ(x, y) y2 dx dy

Iyy =
∫

σ(x, y)x2 dx dy

Izz =
∫

σ(x, y) (x2 + y2) dx dy = Ixx + Iyy

3.
Design a solid right circular cylinder so that if it
is rotated about any axis that passes through its
center of mass, it will continue to rotate about
that axis without wobbling.
Solution
We know from the Euler equations that if a
body has all of its principal moments of inertia
equal to one another, then the components of
the angular velocity vector will be constant, ie
the body will not wobble. Therefore, we must
choose the height to width ratio to make these
moments equal. Choose the origin to be at the
center of mass of the cylinder, with the z axis
along the cylinder’s axis. Then, by symmetry,
Ixx = Iyy, and all off diagonal elements vanish.
Note that if the cylinder has mass m, height h,
and radius R, then the density ρ = m

πR2h .

Izz =
∫ h/2

−h/2

dz

∫ 2π

0

dφ

∫ R

0

r dr ρ(x2 + y2)

=
m

πR2h

∫ h/2

−h/2

dz

∫ 2π

0

dφ

∫ R

0

r3 dr

=
1
2
mR2

Ixx =
∫ h/2

−h/2

dz

∫ 2π

0

dφ

∫ R

0

r dr ρ(y2 + z2)

=
m

πR2h

∫ h
2

−h
2

dz

∫ 2π

0

dφ

∫ R

0

r dr (r2 sin2 φ+ z2)

=
1
2
m

(
1
2
R2 +

1
6
h2

)

We must have

Iyy = Ixx = Izz

R2 =
1
2
R2 +

1
6
h2

R =
h√
3

4.
Assume that the earth is a rigid solid sphere
that is rotating about an axis through the North
Pole. At t = 0 a mountain of mass 10−9 the
earth’s mass is added at north latitude 45◦. The
mountain is added “at speed” so that the earth’s
angular velocity ω is the same before and imme-
diately after the mountain’s addition.

Describe the subsequent motion of the rotation
axis with respect to the North Pole. What is the
velocity of its intersection with the earth’s sur-
face, in miles per year?
Solution:
Let’s choose our axes to be the principal axes of
the whole system (earth plus mountain.) Specif-
ically, let x̂3 point in the direction of the moun-
tain, and let x̂1 point east and x̂2 point north.
Then the moments of inertia about these axes are

I1 = I2 =
2
5
MR2 +mR2

I3 =
2
5
MR2

where M and R are the earth’s mass and radius,
and m = 10−9M is the mountain’s mass. Let
∆I = I1 − I3. Euler’s equations are:

I1ω̇1 = ∆Iω2ω3

I1ω̇2 = −∆Iω1ω3

I3ω̇3 = 0

ω3 is constant, by the third equation. If we de-
fine Ω = ∆Iω3/I1, then the first two equations
become

ω̇1 = Ωω2

ω̇2 = −Ωω1 .

Combine them to get ω̈1 = −Ω2ω1. This is
the equation for a harmonic oscillator, so ω1(t)
is a linear combination of sinΩt and cosΩt.
Since ω1(0) = 0, we must have ω1(t) = A sinΩt
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for some A. Then, taking the time derivative,
we get ω2(t) = A cosΩt. At t=0, we have
ω2 = ω3 = ω/

√
2, so A = ω/

√
2.

�ω(t) =
ω√
2
(x̂1 sinΩt+ x̂2 cosΩt+ x̂3) .

Note that |�ω| is constant. The direction of �ω
traces a circular path about the mountain, start-
ing at the north pole and getting as far south as
the equator. Let’s figure out its speed along the
earth’s surface. Let ω̂ be a unit vector in the di-
rection of �ω: ω̂ = �ω/ω. Then the point at which
the angular velocity vector intersects the earth’s
surface is q = Rω̂. In our chosen coordinate
system,

q =
R√
2
(x̂1 sinΩt+ x̂2 cosΩt+ x̂3)

The speed of this point is

|q̇| =
∣∣∣∣RΩ√

2
(x̂1 cosΩt− x̂2 sinΩt)

∣∣∣∣
=

RΩ√
2
=

∆IωR

2I1

∆I = mR2, and I1 =
(

2
5M +m

)
R2 ≈ 2

5MR2.
The earth’s angular frequency is ω = 7.29 ×
10−5s−1 and its radius is R = 6.38× 106 m, so

|q̇| = 5
4
m

M
Rω = 5.81× 10−7m

s

= 1.14× 10−2miles
year

5.
Assume that the earth is a rigid solid ellipsoid
of revolution, rotating about its symmetry axis
x̂3, and that it has 1 − (I2/I3) = −0.0033 (ac-
tually the earth bulges at the equator, so that
this quantity is really positive). Two equal
mountains are placed opposite each other on the
equator “at speed”, so that ω is the same imme-
diately afterward. What fraction of the earth’s
mass must each mountain have in order to render
the earth’s rotation barely unstable with respect
to small deviations of ω̂ from the x̂3 axis?

Solution:
Use a coordinate system with x̂3 pointing to-
wards the north pole. Assume the mountains
are added to the earth’s surface along the pos-
itive and negative x̂1 axis. Then the inertia
tensor is diagonal both before and after the
addition of the mountains. The earth’s iner-
tia tensor has diagonal elements (I2, I2, I3), and
the mountains contribute (0, 2mR2, 2mR2), so
the total inertia tensor has diagonal elements
(I2, I2 + 2mR2, I3 + 2mR2) along the three co-
ordinate directions. Before the mountains are
added, the moment about the x̂3 axis is the
smallest. We know that in general a rotation
about one of the principal axes is unstable if the
moment of inertia about the axis is in between
the other two. So instability sets in when

I3 + 2mR2 > I2

(The other condition, I3 +2mR2 < I2 +2mR2 is
always satisfied, since I3 < I2.) Rearrange this
equation to get

m >
I2 − I3
2R2

= 0.0033
I3
2R2

= 0.0033× 1
5
M

So the condition is m > 0.00066M .

6.
Consider an asymmetric body (principal mo-
ments I3 > I2 > I1) initially rotating with �ω
very close to the x̂3 axis.
(a)
Show that the projection of �ω(t) on the x̂1 − x̂2

plane describes an ellipse.
Solution:
Euler’s equations are

I1ω̇1 = (I2 − I3)ω2ω3

I2ω̇2 = (I3 − I1)ω3ω1

I3ω̇3 = (I1 − I2)ω1ω2 .

Differentiating the ω̇1 equation with respect to
time yields:

ω̈1 =
I2 − I3

I1
(ω̇2ω3 + ω̇3ω2)

=
I2 − I3

I1

(
ω3

I3 − I1
I2

ω3ω1 + ω2
I1 − I2

I3
ω1ω2

)

=
I2 − I3

I1
ω1

(
ω3

2 I3 − I1
I2

− ω2
2 I2 − I1

I3

)
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Since I3 − I1 > I2 − I1, 1
I2

> 1
I3
, and ω3

2 � ω2
2,

the first term in parentheses dominates the sec-
ond. Therefore

ω̈1 	 −
(
I3
I1

− 1
) (

I3
I2

− 1
)
ω3

2ω1

By a similar argument, we have:

ω̈2 	 −
(
I3
I1

− 1
) (

I3
I2

− 1
)
ω3

2ω2

Thus both ω1 and ω2 execute simple harmonic
motion with the same angular frequency

Ω ≡
((

I3
I1

− 1
) (

I3
I2

− 1
)) 1

2

ω3 .

This will trace out what is known as a Lissajous
figure in the ω1-ω2 plane, which is an ellipse if
the frequencies of the two oscillators are identi-
cal, as they are in this case.
(b)
Calculate the ratio of the major and minor axes
of the ellipse.
Solution:
Let

ω1 = Re
(
ω̃1e

iΩt
)

ω2 = Re
(
ω̃2e

iΩt
)
.

We choose to solve the complex equation of
which this is the real part. Substituting this into
the ω̇2 Euler equation yields

I2
(
iΩω̃2e

iΩt
)
= ω3(I3 − I1)

(
ω̃1e

iΩt
)

ω̃2

ω̃1
= − iω3

Ω
I3 − I1

I2

Thus ω̃1 and ω̃2 are π
2 out of phase, and the el-

lipse axes are along ω1 and ω2. Thus the ratio
of major and minor axes is:

|ω̃1|
|ω̃2| =

ω3

Ω
I3 − I1

I2

=
(
I3 − I1
I3 − I2

I1
I2

) 1
2

This is < 1 or > 1 depending on the details of
the inertia tensor.

7.
Consider a heavy symmetrical top with one point
fixed. Show that the magnitude of the top’s an-
gular momentum about the fixed point can be
expressed as a function only of the constants of
motion and the polar angle θ of the top’s axis.
Solution:
In terms of the Euler angles θ, φ, and ψ, the ω
in the body axes can be written as

ω = x̂1

(
θ̇ cosψ + φ̇ sin θ sinψ

)

+ x̂2

(
−θ̇ sinψ + φ̇ sin θ cosψ

)

+ x̂3

(
φ̇ cos θ + ψ̇

)

and the inertia tensor as

I =


 I 0 0

0 I 0
0 0 I3


 .

The angular momentum L is therefore

L = Iω
= Iω1x̂1 + Iω2x̂2 + I3ω3x̂3

L2 = I2
(
ω2

1 + ω2
2

)
+ I2

3ω
2
3

= I2
(
θ̇2 + φ̇2sin2θ

)
+ I2

3

(
φ̇ cos θ + ψ̇

)2

From the notes (eqs. 11.2 and 11.4) we have two
conserved quantities, pψ and E:

pψ = I3

(
φ̇ cos θ + ψ̇

)

E =
I

2

(
θ̇2 + φ̇2sin2θ

)
+

pψ
2

2I3
+mgh cos θ

These can be rearranged to yield:

φ̇ cos θ + ψ̇ =
pψ

I3

θ̇2 + φ̇2sin2θ =
2
I

(
E − pψ

2

2I3
−mgh cos θ

)

Inserting these quantities into the above expres-
sion for L2, and simplifying, gives us:

L2 = 2I
(
E − pψ

2

2I3
−mgh cos θ

)
+ pψ

2
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which is a function only of θ and constants of
motion.

8.
Investigate the motion of the heavy symmetrical
top with one point fixed for the case in which
the axis of rotation is vertical (along x̂3). Show
that the motion is either stable or unstable de-
pending on whether the quantity 4I2Mhg/I2

3ω
2
3

is less than or greater than unity. (If the top is
set spinning in the stable configuration (“sleep-
ing”), it will become unstable as friction gradu-
ally reduces the value of ω3. This is a familiar
childhood observation.)
Solution:
Eq. 11.4 in the notes tells us:

E =
(pφ − pψ cos θ)2

2Isin2θ
+

I

2
θ̇2 +

p2
ψ

2I3
+Mgh cos θ

Using initial conditions θ = φ = ψ = 0, θ̇ = φ̇ =
0, and ψ̇ = ω3, along with equation 11.2 from
the notes, gives us

pψ = I3

(
φ̇ cos θ + ψ̇

)
= I3ω3

pφ = Iφ̇sin2θ + I3

(
φ̇ cos θ + ψ̇

)
cos θ = I3ω3

Inserting these into the above expression for E
allows us to write E = I

2 θ̇
2 + V (θ), where V (θ)

is an effective potential and is defined as

V (θ) =
I2
3ω

2
3

2I

(
1− cos θ
sin θ

)2

+Mgh cos θ+
1
2
I3ω

2
3 .

If we take derivatives of V (θ) with respect to θ,
we find

dV

dθ
=

I2
3ω

2
3

I

sin θ
(1 + cos θ)2

−Mgh sin θ

d2V

dθ2
=

I2
3ω

2
3

I

2 + cos θ − cos2θ
(1 + cos θ)3

−Mgh cos θ

At θ = 0, dV
dθ = 0, as expected since θ = 0 is an

equilibrium point. In order for it to be stable,
we need d2V

dθ2 > 0 at θ = 0 :

d2V

dθ2 θ=0
=

I2
3ω

2
3

4I
−Mgh > 0

4IMgh

I2
3ω

2
3

< 1 .


